Art. XIX.-On an Expeditious Practical Method of Harmonic Analysis. ${ }^{1}$

By THOMAS R. LYLE, M.A.,

Professor of Natural Philosophy in the University of Melbourne.
(With Plates XXXI.-XXXIII.).
[Read 5th December, 1904].

1. Fourier has shown that if any function $f(t)(=y$ say) of a variable t be such that

$$
f(t)=f(t+\tau)=f(t+2 \tau)=\text { etc. }
$$

where τ is a constant, that is, if $f(t)$ be periodic in t, of period τ, then $f(t)$ can be expressed as the sum of a constant and a series of terms called harmonics, each of the form

$$
a_{p} \sin p\left(\omega t-\theta_{p}\right),
$$

where p has the values $1,2,3,4$, etc.,

$$
\text { and } \omega=2 \pi / \tau \text {. }
$$

The number p is called the order of the harmonic, a_{p} its amplitude, and θ_{p} its phase.

If, in addition, $f(t)$ be such that

$$
f(t)=-f(t+\tau / 2),
$$

then it is easy to see, by substituting $t+\tau / 2$ for t, i.e., $\omega t+\pi$ for ωt in

$$
y=a_{0}+\Sigma a_{p} \sin p\left(\omega t-\theta_{p}\right),
$$

that in order for y_{t} to be $=-y_{t+\tau / 2}$

$$
a_{0}=0, a_{2}=0, a_{4}=0, \text { etc. }
$$

Hence in this case the constant term vanishes and the harmonics, of which $f(t)$ is the sum, are all of odd order. When such is the case $f(t)$ is called an odd periodic function. This is the type generally met with in alternating electric current investigations.

[^0]2. If we define the nth component (C_{n} say) of a periodic function $f(t)$ of period τ as the periodic function which is the sum of those harmonics of $f(t)$ whose orders are $n, 3 n, 5 n, 7 n$, etc., then
\[

$$
\begin{align*}
2 n \mathrm{O}_{n}= & f(t)-f\left(t+\frac{\tau}{2 n}\right)+f\left(t+2 \frac{\tau}{2 n}\right)- \\
& -f\left(t+2 n-1 \frac{\tau}{2 n}\right) . \tag{I.}
\end{align*}
$$
\]

For if we represent the expression on the right of the above equation by $\psi(t)$, we find by substituting successively for t, $t+\tau / 2 n$ and $t+\tau / n$ in it, that

$$
\psi(t)=-\psi\left(t+\frac{\tau}{2 n}\right)=\psi\left(t+\frac{\tau}{n}\right) .
$$

Hence $\psi(t)$ is an odd periodic function of period τ / n, that is to ssy, if

$$
f(t)=a_{0}+\Sigma a_{p} \sin p\left(\omega t-\theta_{p}\right),
$$

where $p=1,2,3,4$, etc., then $\psi(t)$ is of the form

$$
\psi(t)=\Sigma b_{q} \sin q n\left(\omega t-\beta_{q}\right),
$$

where $q=1,3,5,7,9$, etc.
In evaluating $\psi(t)$ therefore, only those harmonics whose arguments are $n \omega t, 3 n \omega t, 5 n \omega t$, etc., need be considered. Neglecting all other harmonics in the different f functions that make up $\psi(t)$, we find that the remainders in the $2 n$ terms

$$
f(t),-f\left(t+\frac{\tau}{2 n}\right), f\left(t+2 \frac{\tau}{2 n}\right), \text { etc. }
$$

are all equal, and that each remainder is the nth component of $f(t)$, hence

$$
\psi(t)=2 n \mathrm{C}_{n} .
$$

3. If $f(t)$ itself contain only odd harmonics as in the case of alternate current periodic functions, then

$$
f(t)=-f\left(t+\frac{\tau}{2}\right)
$$

and equation I., §2, reduces to

$$
\begin{equation*}
n \mathrm{C}_{n}=f(t)-f\left(t+\frac{\tau}{2 n}\right)+\cdots+f\left(t+n-1 \frac{\tau}{2 n}\right) . \tag{II.}
\end{equation*}
$$

The operation on $f(t)$ mathematically represented on the right hand side of equations I. or II., is practically performed on
alternate current waves by the wave tracer and analyzer ${ }^{1}$ designed by the author. In the simplest case, when $n=1$, the wave tracer gives the first component of the periodic quantity operated on, which in the case of alternating electric currents is the full wave. By the movement of two pairs of brushes n can be made 3 , or 5 , or $\overline{7}$, in which cases the analyzer will give the 3 rd, 5 th, or 7 th components of the wave respectively.

Now, in practical investigations with this apparatus on alternating current waves whose harmonic expressions were required, it was found much better to obtain by its means only the full wave trace, and then ly an arithmetical process identical with the action of the analyzer and indicated by equation II. above, to obtain the 3 rd and higher components of the wave, and thence to deduce its harmonics.

This method of harmonic analysis was drawn attention to in the paper already quoted, and though based on a different formula to that of Wedmore, ${ }^{2}$ is practically similar to his. It is more suitable, however, for waves containing only old harmonics, and as I have had considerable experience in its use during the last two years and have found it both expeditious and accurate, it is possible that a short account may be of value to those interested in alternating current work.
4. In wave graphs it is more convenient to use angular abscissae x where

$$
x=\omega t=2 \pi t / \tau .
$$

Making this sulistitution in the equation $y=f(t)$ it becomes $y=g(x)$ say, where

$$
g(x)=g(x+2 \pi),
$$

and if $f(t)$ is an odd periodic function as in the case of alternate current waves which we are now considering,

$$
g(x)=-g(x+\pi)=g(x+2 \pi) .
$$

Substituting $g(x)$ for $f(t)$ in equation II. it becomes

$$
\begin{aligned}
n \mathrm{C}_{n}= & g(x)-g(x+\pi / n)+g(x+2 \pi / n)- \\
& +g(x+n-1 \pi / n),
\end{aligned}
$$

from which we conclude that, if

[^1]$y_{0}, y_{1}, y_{2},-y_{n-1}$ be n equi-spaced ordinates that exactly include half the wave, i.e., ordinates corresponding to the aliscissae $x, x+\pi / n, x+2 \pi / n, \ldots . . . x+n-1 \pi / n$ respectively, and called e.s. ordinates in the sequel ; and if $\mathrm{N}_{0}, \mathrm{~N}_{1}, \mathrm{~N}_{2}-\mathrm{N}_{n-1}$, be the ordinates of the nth component C_{n} whose abscissae are the same as those of $y_{0}^{\prime}, y_{1}, y_{2}, \longrightarrow y_{n-1}$ respectively, then
$$
y_{0}-y_{1}+y_{2}-\ldots+y_{n-1}=n \mathbf{N}_{0}=-n \mathrm{~N}_{1}=n \mathrm{~N}_{2}=\quad=n \mathbf{N}_{n-1}
$$
when n is an odd number, and
$$
y_{0}-y_{1}+y_{2}-\text {. . }-y_{n-1}=0
$$
when n is an even number, as we are now considering odd periodic functions only.

Thus from n e.s. ordinates of the original half wave we obtain only one ordinate per half wave of C_{n}, so that in order to obtain m e.s. ordinates per half wave of C_{n} it is necessary to have $m n$ e.s. ordinates of the original half wave.

For instance, to obtain 3 e.s. ordinates of C_{n} we must measure $3 n$ e.s. ordinates of $g(x)$. Let these be

$$
y_{0}^{\prime}, y_{1}, y_{2} y_{3}^{\prime} \longrightarrow y_{3 n-1},
$$

and let the corresponding ordinates of C_{n} he

$$
\mathrm{N}_{0}, \mathrm{~N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3},-\mathrm{N}_{3 n-1},
$$

then

$$
\begin{aligned}
& y_{0}-y_{3}+y_{6}-\ldots+y_{3 n-3}=n \mathrm{~N}_{0}=-n \mathrm{~N}_{3}=n \mathrm{~N}_{6}==n \mathrm{~N}_{3 n-3} \\
& y_{1}-y_{4}+y_{7}-\ldots+y_{3 n-2}=n \mathrm{~N}_{1}=-n \mathrm{~N}_{4}=n \mathrm{~N}_{7}==n \mathrm{~N}_{3 n-2} \\
& y_{2}-y_{5}+y_{8}^{\prime}-\ldots+y_{3 n-1}=n \mathrm{~N}_{2}=-n \mathrm{~N}_{5}=n \mathrm{~N}_{8}==n \mathrm{~N}_{3 n-1}
\end{aligned}
$$

Subtracting now the ordinates of C_{n} so obtained from the corresponding y ordinates, we obtain a new set of $3 n$ e.s. ordinates which are those of the original half wave with its nth component removed.
5. In practice it will generally be sufticient to determine the 1st, 3rd, 5th, 7 th and 9 th harmonics ($\mathrm{H}_{1} \mathrm{H}_{3} \mathrm{H}_{5} \quad \mathrm{H}_{7} \quad \mathrm{H}_{9}$ say $)$. This can be done with considerable accuracy when 15 e.s. ordinates of the original half wave are given.

Thus if these be

$$
y_{0}, y_{1}, y_{2}, \ldots . \quad . y_{14}^{\prime}
$$

corresponding to the angular abscissae

$$
x_{0}, x_{1}, x_{2}, \ldots . x_{14}
$$

where $x_{1}-x_{0}=x_{2}-x_{1}=. \quad . \quad=x_{14}-x_{18}=\pi / 15$, and if $z_{0}, z_{1}, z_{2}, z_{3}, z_{4}$, be 5 e.s. ordinates of the half wave of
C_{3}, then

$$
\begin{gathered}
3 z_{0}=y_{0}-y_{5}+y_{10}=-3 z_{5}=3 z_{10} \\
3 z_{1}=y_{1}-y_{6}+y_{11}=-3 z_{6}=3 z_{11} \\
\dot{0} \\
3 z_{4}=y_{4}-y_{9}+y_{14}=-3 z_{9}=3 z_{14},
\end{gathered}
$$

and if u_{0}, u_{1}, u_{2} be 3 e.s. ordinates of the half wave of C_{51}, then

$$
\begin{aligned}
& 5 u_{0}=y_{0}-y_{3}+y_{6}-y_{9}+y_{12}=-5 u_{3}=5 u_{5}=-5 u_{9}=5 u_{12} \\
& 5 u_{1}=y_{1}-y_{4}+y_{7}-y_{10}+y_{13}=-5 u_{4}=5 u_{7}=-5 u_{10}=5 u_{13} \\
& 5 u_{2}=y_{2}-y_{5}+y_{8}-y_{11}+y_{14}=-5 u_{5}=5 u_{8}=-5 u_{11}=5 u_{14}
\end{aligned}
$$

the figure subscribed to each ordinate indicating the abscissa to which it corresponds.

Now the full wave

$$
\text { and } \begin{aligned}
& \mathrm{C}_{1}=\mathrm{H}_{1}+\mathrm{H}_{3}+\mathrm{H}_{5}+\mathrm{H}_{7}+\mathrm{H}_{9}+\text { etc. } \\
& \mathrm{C}_{3}= \\
& \mathrm{C}_{5}= \\
& \mathrm{H}_{3}+\mathrm{H}_{9}+\mathrm{H}_{15} \\
& \mathrm{H}_{5}+\mathrm{H}_{15}
\end{aligned}
$$

so that if H_{15} be neglected, and the sums of the corresponding ordinates of C_{3} and C_{5} be subtracted fram those of C_{3}, the fifteen remainders are ordinates of

$$
\mathrm{H}_{1}+\mathrm{H}_{7}+
$$

i.e., of H_{1}, if we neglect H_{7}.

If H_{15} cannot be neglected it can at once be removed from C_{5} before subtracting from C_{1}, for as it is $(q \cdot p$.$) the 3$ rd component of C_{5}, of which we have 3 e.s. ordinates u_{0}, u_{1}, u_{2}, its three corresponding ordinates are $i_{0},-i_{0}, i_{0}$ where $3 i_{0}=u_{0}-u_{1}+u_{2}$,
hence H_{5} will de completely given by

$$
c_{0}, c_{1}, c_{2} \text { where }
$$

$$
c_{0}=u_{0}-i_{0}, c_{1}=u_{1}+i_{0}, c_{2}=u u_{2}-i_{0} .
$$

H_{15} can now be taken from C_{3}, thus

$$
z_{0}-i_{0}, \quad z_{1}+i_{0}, \quad z_{2}-i_{0}, \quad z_{3}+i_{0}, \quad z_{4}-i_{0}
$$

are the 5 e.s. ordinates of $\mathrm{H}_{3}+\mathrm{H}_{9}$.
In order to determine H_{3} and H_{9} it will now be necessary to plot the 5 ordinates of $H_{3}+H_{9}$, measure off 6 e.s ordinates from the smooth curve drawn through them, and from these determine their first component, that is 2 e.s. ordinates of H_{9}. These will completely determine H_{9} if H_{27} etc., be neglected, and by subtracting them from the corresponding ordinates of $\mathrm{H}_{3}+\mathrm{H}_{9} 6$ e.s. ordinates of H_{3} are obtained.

If H_{7} cannot be neglected it will be necessary (if the original wave trace is not available) to plot the 15 ordinates of
$\mathrm{H}_{1}+\mathrm{H}_{7}$ obtained above, and from the smooth curve drawn through them to measure off 14 e.s. ordinates. From these, 2 e.s. ordinates of the half wave of H_{7}, and which determine H_{7}, can be obtained. By subtracting these from the corresponding ones of $\mathrm{H}_{1}+\mathrm{H}_{7}$, 14 corrected ordinates of H_{1} are obtained.
6. It now remains to determine the amplitudes and phases of the harmonics of C_{1} from their ordinates which we have obtained. It is easy to show that

$$
\begin{gathered}
\frac{2}{n}\left\{\sin ^{2} \theta+\sin ^{2}\left(\theta+\frac{\pi}{n}\right)+\sin ^{2}\left(\theta+\frac{2 \pi}{n}\right)+\right. \\
\left.+\sin ^{2}\left(\theta+\overline{n-1} \frac{\pi}{n}\right)\right\}=1,
\end{gathered}
$$

from which we conclude that the square root of twice the mean of the squares of n e.s. ordinates of half a sine wave is equal to its amplitude.

Hence, with the help of a table of squares or of the quarter squares given in most sets of tables the amplitudes of $\mathrm{H}_{1}, \mathrm{H}_{3}$, etc., can be quickly determined.
[The rule that the amplitude is equal to $\pi / 2 \times$ mean of the ordinates is only sufficiently accurate when a large number of ordinates is taken.]

If $a_{0}, a_{1}, a_{2}, \ldots . a_{14}$ be the ordinates we have found for H_{1} corresponding to the angular abscissae $x_{0}, x_{1}, x_{2} \ldots \ldots x_{14}$ respectively, and if h_{1}, a be the amplitude and phase of H_{1} or in other words, if

$$
\mathrm{H}_{1}=h_{1} \sin (\omega \mathrm{t}-\boldsymbol{\alpha}),
$$

then any of the equations

$$
\begin{aligned}
\sin \left(x_{0}-\alpha\right) & =a_{0} / h_{1} \\
\sin \left(x_{1}-\alpha\right) & =a_{1} / h_{1} \\
\sin \left(x_{2}-a\right) & =a_{2} / h_{1} \text { etc. },
\end{aligned}
$$

would determine a, provided the ordinates a_{0}, a_{1}, a_{2}, etc., are exactly those of a sine wave.

In practice, however, small upper harmonics will invariably be left in a_{0}, a_{1}, a_{2}, etc. [it may not have been thought worth while to remove H_{7}], and though their amplitudes may be negligably small, yet they might cause considerable error in the value of α when determined from only one of the above equations. Hence it
is advisable to obtain four values of a from the first four ordinates on the rising side of the wave and four from the last four ordinates on the falling side, and take the mean of the eight. - In this way we can to a great extent eliminate any error that might arise due to a harmonic even as low as the seventh not having been removed.

In a similar way the phases of $\mathrm{H}_{3}, \mathrm{H}_{5}$ etc., can be determined, but it must be remembered that if, for instance,

$$
\mathrm{H}_{3}=h_{3} \sin 3(\omega t-\beta),
$$

and if $b_{0}, b_{1}, \ldots b_{4}$ are the ordinates of H_{3} corresponding to the alscissae $x_{0}, x_{1}, \ldots x_{4}$, then

$$
\sin 3\left(x_{0}-\beta\right)=b_{0} / h_{3} \text { etc. }
$$

similarly, if

$$
\mathrm{H}_{5}=h_{5} \sin 5(\omega t-\gamma)
$$

with ordinates c_{01}, c_{1}, c_{2},

$$
\text { then } \sin 5\left(x_{0}-\gamma\right)=c_{0} / h_{5} \text {. }
$$

7. The wave to he analyzed may be given in either of two ways. We may have the complete trace of it obtained by the author's wave tracer by the photographic method, or by any form of oscillograph that gives a trace of the wave form; or we may have the values of a detinite number only of ordinates per half wave, such as would be obtained by the author's wave tracer by the galvanometer and scale method.

From the wave trace the complete harmonic expression can theoretically be obtained, but the impossibility of accurately measuring on the photograph, without elaborate apparatus, the different ordinates required leads to great inaccuracy in the result.

From a given number of e.s. ordinates only an approximate analysis can be obtained, more approximate, of course, as the number of ordinates is greater. When, however, each individnal ordinate has been obtained with the accuracy of which the galvanometer and scale method is susceptible, the analysis obtained from fifteen such ordinates is much more reliable, as far as the harmonics up to the 9 th are concerned, than that determined from any photographic trace.

I will therefore illustrate the method by applying it in full detail to the analysis of the wave whose 15 e.s. ordinates are
1.
Mable

given in row 5 of Table I. Every figure necessary in the calculation will be given.

The first row of figures in Table I. are the abscissae x_{0}, x_{1}, etc. to which the given ordinates correspond. Space for three rows of figures is left, and then the 15 given ordinates are written down. These are divided into three sets of five each, and the numbers of the middle set are subtracted in order from the sums of first and last set, giving five numbers which are the corres ponding ordidates of $3 \mathrm{C}_{3}$. Space for two or more rows is left, and the given ordinates are now written down as in the table, in two rows of six each and one row of three, in order. The columns formed are added and the last three of the sums are subtracted from the first three, giving three ordinates of 5_{5}. The first of these minus the second, plus the third, gives one ordinate of $15 \mathrm{C}_{15}$, whose other ordinates are got by alternating the sign. Sultracting $5 \mathrm{C}_{15}$ from $5 \mathrm{C}_{5}$ we obtain $5 \mathrm{H}_{5}$. Having obtained C_{15} we now subtract $3 \mathrm{C}_{15}$ from $3 \mathrm{C}_{3}$ and olbtain $3\left(\mathrm{H}_{3}+\mathrm{H}_{9}\right)$.

A bove the given ordinates write those of C_{3} with signs changed (row 4), and ahove these write those of H_{5} with signs changed (row 3). Add rows 3,4 and 5 to get row 2 , in which are the ordinates of $\mathrm{H}_{1}+\mathrm{H}_{7}+\mathrm{H}_{11}$ etc. Neglecting $\mathrm{H}_{7}, \mathrm{H}_{11}$, etc., as is done the analysis in Table I., we may consider the tigures in row 2 as the ordinates of H_{4}, and neglecting H_{9} we may consider the figures in row 11 as the ordinates of $3 \mathrm{H}_{3}$.

The first 15 numbers under $\mathrm{Amp} . \mathrm{H}_{1}$ are the quarter squares of the ordinates of H_{1}. Twice the sum of these is divided by 15 , the number of ordinates, and the quotient is found to be the quarter square of 987 . Hence h_{1}, the amplitude of H_{1}, is 987 . Similarly for the amplitudes of H_{3} and H_{5}.

Under the heading "phase of H_{1} " " in the first column under sines, are the quotients got by lividing the first four ordinates on the rising side of H_{1} and the last four on the falling side of H_{1} by h_{1}; in the second column under angles are the corresponding angles, and in the third column are the eight values of $12^{\circ}-a$ deduced. The mean of these $2^{\circ} 2^{\prime}$ when subtracted from 12° gives the crossing point or phase of H_{1} as $9^{\circ} 58^{\prime}$. Similarly for the phases of H_{3} and H_{5}. It will be noticed that at the crossing point determined for $\mathrm{H}_{3}, \mathrm{H}_{3}$ crosses down, which is expressed analytically by writing its amplitude negative.
8. It will be noticed in the determination of the phase of H_{1} in Table I., that the eight values of $12^{\circ}-\alpha$ differ considerably from each other, indicating the presence in what we there take for H_{1} of a considerable upper harmonic, probably H_{7}. In order to determine H_{7} fourteen e.s. ordinates of the half wave are required. If the wave trace were given these could be measured off from it, but if, as in the case we are considering, only 15 original ordinates are given, it is necessary to plot the 15 ordinates of $\mathrm{H}_{1}+\mathrm{H}_{7}$ obtained in Table I., and from the smooth curve drawn through them to measure off 14 e.s. ordinates. This has been done and the values obtained are given in row 4 , Table II., as well as the calculation necessary for the determination of H_{7} and its elimination from $\mathrm{H}_{1}+\mathrm{H}_{7}$.

What is called the amplitude of H_{1} in Table I . is really $\sqrt{2}$ R.M.S. $\left(H_{1}+H_{i}\right)$, To get amp. H_{1} it is better to remove the effect of H_{7} by treating it as a correction, thus avoiding error that might be introduced in the plotting. This is easily done, since

$$
\mathrm{M} . \mathrm{S}\left(\mathrm{H}_{1}+\mathrm{H}_{7}\right)=\frac{h_{1}{ }^{2}}{2}+\frac{h_{7}{ }^{2}}{2}
$$

hence $h_{1}($ corrected $)=\sqrt{\operatorname{Amp} .\left(\mathrm{H}_{1}+\mathrm{H}_{7}\right)^{2}-h_{7}{ }^{2}}$

$$
=\sqrt{h_{1}{ }^{2}(\text { uncorrected })-h_{7}{ }^{2}}
$$

In Table II. the corrected crossing point of H_{1} is determined, and it is seen to differ in phase only by 2 minutes from the value obtained in Table I.

The difference between the four values of $3\left(24^{\circ}-\beta\right)$ when determining the crossing point of H_{3} in Table I. point to the presence of a ninth harmonic, which exists as a third component in $\mathrm{H}_{3}+\mathrm{H}_{9} . \quad \mathrm{H}_{9}$ can, if desired, be determined by plotting the 5 ordinates obtained in Table I., measuring off from the curve six e.s. ordinates and proceeding as before. It will be found that

$$
\mathrm{H}_{9}=3 \sin 9\left(\omega t-13^{\circ}\right) .
$$

9. In Table III. is given most of the work required for the determination of the first six harmonics of a complete wave that contains harmonics both of odd and even orders. Twenty-four e.s. ordinates of the full wave are taken. This number is specially suitable, as it enables us to determine directly $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$

Gable III

and C_{6}. To determine C_{5}, replotting will have to be resorted to if the full wave trace be not available.

At the top of Table III. are written the 24 given ordinates under their corresponding abscissae. From these ordinates the constant term of $f(t)$ has been removed. This can be done by aid of the formula

$$
\begin{gathered}
f(t)+f(t+\tau / n)+f(t+2 \tau / n)+\ldots+f(t+n-1 \tau / n) \\
=n\left[a_{0}+a_{n} \sin n\left(\omega t-\theta_{n}\right)+a_{2 n} \sin 2 n\left(\omega t-\theta_{2 n}\right)\right. \\
\left.+a_{3 n} \sin 3 n\left(\omega t-\theta_{3 n}\right)+\text { ete. }\right]
\end{gathered}
$$

which can be easily established by the method used in $\S 2$.
From this formula we see that the mean of n e.s. ordinates embracing one period of a periodic function is equal to its constant term, if its n th, $2 n$ th, etc., harmonics are neglected.

Returning to Table III., we add the second twelve ordinates with their signs changed to the first twelve, in order, and obtain 12 e.s. ordinates of $2 \mathrm{C}_{1}$, i.e., of $2\left[\mathrm{H}_{1}+\mathrm{H}_{3}+\mathrm{H}_{5}+\right.$. (See equation I., § 2).

Subtracting these from twice the given ordinates, those of $2\left[\mathrm{H}_{2}+\mathrm{H}_{4}+\mathrm{H}_{6}+\right]$ are left, and the remainder of the work proceeds as in Table I.
$2\left[\mathrm{H}_{2}+\mathrm{H}_{4}+\mathrm{H}_{6}+\right.$ etc. $]$ could be obtained directly from the 24 given ordinates by adding the second 12 to the first 12 of them, in order. (See formula III., § 9).

The amplitudes and phases of the different harmonics were determined as in 'Table I., but the figures necessary in their calculation are not given.

The following are interesting applications of the above method to more general harmonic analysis.
10. To obtain the harmome expression for the odd periodic function whose graph for half a period is the sides of an isosceles triangle of altitude h. See Fig. 1.

Taking o and π as the abscissae of the extremities of the base, relative values of any number of e.s. ordinates can be written down, and any component at once obtained. Thus, 30 e.s. ordinates would be $0,1,2,3, \ldots .14,15,14, . .2,1$, and these correspond to an altitude 15 .

It will be found that all the components (i.e. 3 rd, 5 th, etc., in this case) are the sides of isosceles triangles passing through the origin, and that the altitudes are

$$
-h / 3^{2}, h / \tilde{\sigma}^{2},-h / \tau^{3}, \text { etc. respectively. (See Fig. 1.). }
$$

(The same can be quickly arrived at geometrically).
Hence, if the full wave or C_{1} be represented by

$$
\mathrm{C}_{1}=a_{1} \sin \left(\omega t-\theta_{1}\right)+a_{3} \sin 3\left(\omega t-\theta_{3}\right)+a_{5} \sin \check{ }\left(\omega t-\theta_{5}\right)+\text { etc. },
$$

its third component C_{3} is

$$
\begin{aligned}
=-\frac{1}{3^{2}} & {\left[a_{1} \sin \left(3 \omega t-\theta_{1}\right)+a_{3} \sin 3\left(3 \omega t-\theta_{3}\right)+a_{5} \sin 5\left(3 \omega t-\theta_{5}\right)\right.} \\
& + \text { etc. }]
\end{aligned}
$$

and its fifth component C_{5} is

$$
\frac{1}{5}\left[a_{1} \sin \left(5 \omega t-\theta_{1}+a_{3} \sin 3\left(5 \omega t-\theta_{3}\right)+a_{5} \sin 5\left(5 \omega t-\theta_{5}\right)+\text { etc. }\right]\right.
$$

and so on, but by definition C_{3} and C_{5} are also given by

$$
\begin{aligned}
& \mathrm{C}_{8}=a_{3} \sin 3\left(\omega t-\theta_{3}\right)+a_{9} \sin 9\left(\omega t-\theta_{9}\right)+ \\
& \mathrm{C}_{5}=a_{5} \sin \check{5}\left(\omega t-\theta_{5}\right)+a_{15} \sin 15\left(\omega t-\theta_{15}\right)+
\end{aligned}
$$

hence, identifying the expressions for the same components, we find that

$$
\begin{aligned}
& a_{1}=-3^{2} a_{3}=5^{2} a_{5}=-7^{2} a_{7}=\text { etc. }, \\
& \theta_{1}=3 \theta_{3}=5 \theta_{5}=7 \theta_{7}=\text { etc. },
\end{aligned}
$$

[^0]: 1 Appendix to the paper: "Preliminary Account of a Wave Tracer and Analyzer." Phil. Mag., Nov., 1903.

[^1]: 1 Lyle: "Preliminary Account of a Wave Tracer and Analyzer." Phil. Mag., Nov. 1903.

 2 Wedmore: Journal Inst. Elect. Engineers, vol. xxv., p. 224 (1896).

